
54

PIC push button control
of your FT-817
…or other compatible radios

Technical Feature September 2015 l RadCom
Jonathan Hare, G1EXG l j.p.hare@sussex.ac.uk

INTRODUCTION. The FT-817 is an
amazing little radio that covers the amateur
radio bands from 1.8 to 430MHz. Although
it’s been around for almost 15 years there
is still no other low power transceiver of
similar size and spec available so it is still a
very popular radio. However it’s so compact
that a lot of the functionality of the radio
requires you to go through numerous menu
button presses, which can be tedious. This
project uses a PIC chip and the FT-817’s
CAT computer control facility to quickly go
to your favourite modes and frequencies by
a simple press of a button without having
to tackle the menus. The device should
also work with the FT-857 and FT-897
transceivers.

G4JNT has described a PIC project to
directly enter a frequency into the FT-
817 via a small telephone type keypad
[1]. Rather than fiddling around with the
function keys you can get to where you
want to go very easily just by typing it in. I
made up a version of the project and learnt
a lot in the process [2].

The circuit I describe here does not
use a keypad: instead, I have set up push
buttons to control the transceiver. The circuit
will not only take you directly to a chosen
frequency but it can also set the mode as
well as other features. For example if you
want to go to the 2m SSB calling frequency
all you have to do is simply press a button
and the unit will take you to 144.300MHz
and set the mode to upper side band (USB).
There is a ‘20 up’ button to take you away
from the calling frequency to 144.320MHz.
Another of the push switches is a ‘club net’
button. The Worthing and District Amateur
Radio Club (WADARC) meets at 7.30pm on
Monday nights on 145.425MHz FM and
one button push sets everything up.

The full list of functions on my version of
the controller is:

1.	 Push to talk (PTT) ON
2.	 PTT OFF
3.	 Toggle between VFO A & VFO B
4.	 144.300MHz USB SSB calling

frequency
5.	 ‘20 up’ from SSB calling frequency,

ie 144.320MHz
6.	 2m WADARC Monday night club net,

145.425MHz FM.
7.	 80m PSK frequency, 3.580MHz, USB

8.	 23cm transverter frequency
1296.100MHz (FT-817 to
146.100MHz, USB)

9.	 23cm transverter QSY 1296.250MHz
(FT-817 to 146.250MHz, USB).

I have also included push to talk (PTT)
ON and OFF buttons. If you are adjusting
a circuit that needs the FT-817 to transmit
(eg setting up a linear amplifier into a
dummy load), instead of trying to hold
the microphone switch ON while making
adjustments, you can simply press the PTT
ON button to transmit and then OFF to go
back to receive. You could use this like a
latching base microphone if you want to
experiment with your own desk mic.

I assigned two buttons for a 2m to 23cm
transverter. If I want to go to 1296.100MHz
I need my FT-817 to tune to 146.100MHz,
which I can do with a press of a button. I
have also included 146.250 (150kHz up)
so that I can QSY (note: a re-setting of the

FT-817 frequency coverage [3] is required
to transmit here).

In normal use you can change from
VFO A to VFO B using the three selection
keys on the front of the FT-817. However
I have often found that when you portable
the placement of these keys and the way
you have to push them is not always very
convenient. This little circuit makes this
much easier as a single button push will
toggle between them.

Of course the idea here is that you
can modify the code described here to
incorporate your own favourite settings
and functions to custom design your own
controller.

NUMBER OF SWITCHES / PRE-SETS. I
used a 16F688 PIC microchip [4] set to
use its own built-in oscillator so we don’t
need to add an extra crystal (this frees up
two of the PIC pins, which is good as it’s
only a 14 pin chip). The PIC has two 6 pin

PHOTO 1: The completed controller provides an easy way to set the FT-817 to commonly-used
frequencies and modes.

© RSGB 2015

55

Technical FeatureSeptember 2015 l RadCom
Jonathan Hare, G1EXG l j.p.hare@sussex.ac.uk

ports (PORT A and PORT C) so we have a
total of 12 free input / output pins to play
with. One pin on Port C (C4 on pin 6 of the
PIC) is used for the serial data transmission
(PIC to radio), one on Port A (A4 on pin 3
of the PIC) is for an LED and another for
the MCLR pin that is part of the in circuit
programmer (ICSP): more on this later.
This leaves 9 port pins to go to the front

panel switches (listed in Table 1). A matrix
arrangement could be used to get more
switches for the available input pins but I
have opted for simplicity in this prototype
and simply used one switch on one input.

When a switch is pressed it pulls the PIC
input pin to ground. PORT A has internal
pull-up resistors that can be selected in the
software to allow this to work but PORT C

does not have this facility. So we have to
include five resistors, one for each of these
inputs.

CAT COMMS BETWEEN PIC AND FT-817.
The PIC communicates to the transceiver
via a serial data link, which Yaesu calls
CAT – computer assisted transceiver. It is
based on a TTL level version of RS232.
The serial port configuration is set up
at the start of the code. For this project
we only need to be able to send data to
the FT-817 so we don’t need to receive
anything back to the PIC. Therefore I have
only used the Tx port, which is on pin 6
of the 16F688. The CAT protocol needs
1 start bit, 8 data bits and 2 stop bits. I
followed G4JNT and used a baud rate of
9600 (you need to set the FT-817 to this
rate via the menu settings, as the default
is 4800 baud [5]).

Note: the 5V signal levels created by the
PICs are correct to go directly to the radio;
it does not need to be inverted to higher
voltages of a typical RS232 line (eg ±15V).

To get the radio to respond to our PIC
data we need to send the radio five groups,
or sets of numbers: the first four consist
of data, while the last is the command
telling the radio what to do with the data,
eg [data1] [data 2] [data 3] [data 4]
[command]

To tell the FT-817 which frequency to go
to you need to break up the frequency into
data parts and a command. There are four
data parts, which consist of the frequency
digits split into pairs. The command
completes the sequence and tells the radio
to use this data to set the frequency (the
command is ‘01’ in this case). For example
to set the radio to 145.425MHz the CAT
system needs to send ‘14’, ‘54’, ‘25’, ‘00’
and then ‘01’.

To change the mode the first group
sent is the code for the particular mode
(eg ‘00’ = LSB, ‘01’ = USB, more on
which later) followed by three ‘null’ groups
(which can be any value) and the fifth is
the command to order the mode change,
which is ‘07’. So for example to change the
mode to USB we need to send: ‘01’, ‘xx’,
‘xx’, ‘xx’, ‘07’. Or, more generally, ‘AA’, ‘xx’,
‘xx’, ‘xx’, ‘07’, where xx can be any data and
AA is 00 = LSB, 01 = USB, 02 = CW,
03 = CWR, 04 = AM, 08 = FM,
0A = DIG, 0C = PKT

Other FT-817 hex commands [5] include
01 = set frequency, 07 = set operating
mode, 08 = set PTT ON, 88 = set PTT
OFF, 81 = toggle the VFO.

To change the frequency and the mode
when one of the buttons is pressed, the
code needs first to send the five groups
of data for the frequency change then the
five for the mode change. To set up for a
local repeater we would need to send four
different sets of parameters one after the

PIC16F688

1k

LED

ICSP

0μ1

7805++

0V
100 μ 0μ1

CAT data
to FT-817

1

2

3

4

5

6

931 21 11 01

14

5 x 4k7

Push switches 1 2 3 4 5 6 7 8 9

8 7

FIGURE 1: The circuit diagram of the FT-817 controller.

PHOTO 2: Inside the box the layout is quite straightforward. I used a PCB but the circuit is so simple
that Veroboard or even dead-bug construction would be fine.

© RSGB 2015

57

other: frequency, mode, repeater offset and
the subaudible tone frequency (CTCSS).

Changing from the front BNC to the rear
SO239 antenna socket would be useful,
as would the ability to set the radio to
low power for my 23cm transverter, but
unfortunately the commands for these do
not seem to be provided. It is possible to
re-programme the internal EEPROM of the
radio but I didn’t want to go down that road
with the current project as you can wipe the
radio setting if you do this incorrectly.

THE CODE. You can download the
original code from my website [2] and I
have annotated the PIC ASM code with
comments so you can see how it works. You
will want to change the data groups for your
particular set of club frequencies and modes
etc. In operation the code scans the 9
press buttons and if one is pressed (ie if the
input pin is low) the program diverts to the
relevant subroutine. Each subroutine then
sends out the CAT signals for that particular
frequency change, mode change etc then
the program returns to scanning the press
buttons. For simplicity the code only detects
if one button is pressed but I suppose one
switch could be used as a ‘shift’ if more
functionality was required for the remaining
eight switches (although simplicity is really
the key to this device).

One of the Port A pins (A4 on pin 3) is
used as an output to drive an LED. Once
the device is plugged into the radio the first
thing the code does is to flash this LED a
couple of times to show you that all is OK
with the power and the controller device.
The LED also flashes when data is sent to
the radio, giving a visual indication from
the controller that something is happening
when you press a button. I have written the
code so the LED flashes with the number
of separate instructions that are sent to the
radio eg change in frequency = 1 flash,
change in frequency and change in
mode =2 flashes etc.

The PIC responds much faster than human
reaction times so I have built delays into the
code. For example if you press switch 4 it will
change the frequency and mode. Pressing it
again, or not letting go of the button quickly

enough will not be a problem
as it just repeats the same
set up and you don’t notice
any problem. However, if you
keep the ‘toggle VFO’ switch
pressed too long (switch 3)
the circuit will switch very
quickly between the VFO A
and VFO B, producing an
erratic response. I therefore
built in a short delay after
sending the data to give you
time to let go of the button.

Once you have changed
the code to incorporate
your own setting you can
assemble the code and
transfer the hex file to the
PIC. You can do this by
putting the chip into a
suitable programmer and
flashing the code into the
PIC. I used the MPLAB IDE
software and a PICSTART
programmer to do this but
once the PIC was fitted in
the PCB circuit I used an
in-circuit programmer (ICSP,
MPLAB PM3). There are
four wires on the ICSP and
you need to check the connections on your
programming cable. Note that you need to
provide power to the PCB while programming
with the ICSP and then you need to
disconnect the ICSP for the circuit to work.

CONSTRUCTION. I built the device into a
small painted dicast box with the CAT cable
going out from the back. I used a PCB, but
the circuit is so simple that it could easily be
made on Vero or perf board or even birds-
nest style on top of a copper clad PCB. For
this reason, no PCB is being published here.
I covered the back of the box in a thin layer
of rubber matting to avoid slipping.

A brief description of the CAT cable
specifications and pin connections at the
back of the transceiver can be found in the
FT-817 manual. Note the socket is the ACC
socket, not the DATA socket. Instead of
buying a cable and the 8 pin mini DIN plug
I brought a pre-wired 8 pin mini DIN to 8

pin mini DIN lead from eBay
as they are only a couple of
pounds each. The lead I used
seemed to be a cross-over
lead so if you cut the lead in
half, to wire it into the PIC
circuit, the colour of the wires
to the 8 pins on one plug do
not match the colours on the
other. So you need to check
the connections (I have some
info on my website [2]).

Note: don’t be tempted
to buy a generic 8 pin mini
DIN to D type CAT lead, even

though they look like they would be ideal,
as they don’t seem to have enough wires
connected up for use with the FT-817.

POWER. The ACC socket provides power
for our project so you don’t need an extra
battery to power the controller but a small
78L05-type regulator is required to drop
the supply to 5V. One issue using the ACC
socket to provide power is that it does not
shut off when you turn the radio off. So if
you leave the device plugged in it will drain
the battery. I had thought of including an
on / off switch but it seemed to me that one
would be as likely to forget to turn this off as
remember to unplug the cable.

COST. I used a quality painted dicast
box and mini push switches from RS
Components. You could make the project
more economically if you use cheaper
components such as found on eBay etc.
The PIC is only a few pounds and provided
you have a suitable programmer you could
make a budget version of this project for
less than £15.

WEBSEARCH

[1] G4JNT page: www.g4jnt.com

[2] my PIC web page on my website:

www.creative-science.org.uk/pic.html

[3] search for ‘MSCOMM’ and ‘WidebanderV4’ to extend

the FT-817 frequency range.

[4] see the Microchip website www.microchip.com for the

PIC16F688 data sheet

[5] see the Yaesu FT-817 operating manual for more

details of the CAT commands

Technical FeatureSeptember 2015 l RadCom
Jonathan Hare, G1EXG l j.p.hare@sussex.ac.uk

TABLE 1: Summary of PIC16F688
port connections.

Switch number 	 PIC Port	 PIC pin number
1	 PORT A0	 13
2	 PORT A1	 12
3	 PORT A2	 11
4	 PORT C0	 10
5	 PORT C1	 9
6	 PORT C2	 8
7	 PORT C3	 7
8	 PORT C5	 5
9	 PORT A5	 2

PHOTO 3: Close-up of the controller front panel. You can select
your own operating frequencies by altering the PIC code (see text).

© RSGB 2015

